A Portable Setup for Fast Material Appearance Acquisition

نویسندگان

  • Filip Radoḿır Vávra
  • Mikuláš Krupička
  • Jiřı́ Filip
  • Radomı́r Vávra
چکیده

A photo-realistic representation of material appearance can be achieved by means of bidirectional texture function (BTF) capturing a material’s appearance for varying illumination, viewing directions, and spatial pixel coordinates. BTF captures many non-local effects in material structure such as inter-reflections, occlusions, shadowing, or scattering. The acquisition of BTF data is usually time and resource-intensive due to the high dimensionality of BTF data. This results in expensive, complex measurement setups and/or excessively long measurement times. We propose an approximate BTF acquisition setup based on a simple, affordable mechanical gantry containing a consumer camera and two LED lights. It captures a very limited subset of material surface images by shooting several video sequences. A psychophysical study comparing captured and reconstructed data with the reference BTFs of seven tested materials revealed that results of our method show a promising visual quality. As it allows for fast, inexpensive, acquisition of approximate BTFs, this method can be beneficial to visualization applications demanding less accuracy, where BTF utilization has previously been limited. Keywords-measurement setup, material appearance, BTF, ABRDF, visual psychophysics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid Material Appearance Acquisition Using Consumer Hardware

A photo-realistic representation of material appearance can be achieved by means of bidirectional texture function (BTF) capturing a material's appearance for varying illumination, viewing directions, and spatial pixel coordinates. BTF captures many non-local effects in material structure such as inter-reflections, occlusions, shadowing, or scattering. The acquisition of BTF data is usually tim...

متن کامل

DOME II: A Parallelized BTF Acquisition System

Bidirectional Texture Functions (BTFs) provide a realistic depiction of the appearance of many real-world materials as they contain the spatially varying light scattering behavior of the material surface. Since editing of existing BTF data is still in its early stages, materials have to be measured from real-world samples. In contrast to the related Spatially Varying BRDFs (SVBRDFs), the reflec...

متن کامل

Fast method of sparse acquisition and reconstruction of view and illumination dependent datasets

Although computer graphics uses measured view and illumination dependent data to achieve realistic digital reproduction of realworld material properties, the extent of their utilization is currently limited by a complicated acquisition process. Due to the high dimensionality of such data, the acquisition process is demanding on time and resources. Proposed is a method of approximate reconstruct...

متن کامل

Mathematical model for dynamic cell formation in fast fashion apparel manufacturing stage

This paper presents a mathematical programming model for dynamic cell formation to minimize changeover-related costs (i.e., machine relocation costs and machine setup cost) and inter-cell material handling cost to cope with the volatile production environments in apparel manufacturing industry. The model is formulated through findings of a comprehensive literature review. Developed model is val...

متن کامل

Fast Cellular Automata Implementation on Graphic Processor Unit (GPU) for Salt and Pepper Noise Removal

Noise removal operation is commonly applied as pre-processing step before subsequent image processing tasks due to the occurrence of noise during acquisition or transmission process. A common problem in imaging systems by using CMOS or CCD sensors is appearance of  the salt and pepper noise. This paper presents Cellular Automata (CA) framework for noise removal of distorted image by the salt an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014